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We studied the lasing and spectroscopic properties of 
erbium in yttrium aluminum gamet, both as a single impu- 
rity and when codoped with neodymium or holmium. In 
all cases, we observed lasing at 2.936 and 2.939 p; when 
erbium was codoped with holmium, we also observed las- 
ing at 2.795 and 2.766 pm. (This is in contrast to 
(Er,Nd):YA103, which lased only on one line, 2.73 p.) 
By determining the energy-leve1 splitting implied by the 
four observed laser lines, and combining this with trans- 
mission spectroscopy, we were able to assign unambigu- 
ous values to the Stark sublevels of the three lowest energy 
levels of Er3+ in YAG at rmm temperature. 

Introduction 

We observed that yttrium aluminum garnet (YAG) doped 
with 30% (at.) Er3+ ions and 1.5% (at.) Ho3+ ions lased 
at four wavelengths during a single flashlamp pump pulse: 
2.939 and 2.936 p simultaneously, followed by 2.795 
and 2.766 p simultaneously. We observed the latter two 
lines only in (30% Er, 1.5% Ho):YAG. However, we 
observed the first two wavelengths in (15% Er, 1% 
Nd):YAG, (30% Er, 1% Nd):YAG, (17% Er):YAG, (33% 
Er):YAG, and (50% Er):YAG as well. This is the first 
time, to our knowledge, that these wavelengths have been 
observed simultaneously in erbium-doped YAG crystals, 
whether or not c d o p e d  with another ion. The four laser 
wavelengths we observed, together with transmission 

spectroscopy, enable us to define unambiguously the ener- 
gies of the various Stark sublevels of Er:YAG. 

Materials and Methods 

A11 the laser rods were cut from crystals grown by the 
Czwhralski method. They were each */4 inch (6.35 mm) 
in diameter, and the ends were flat and uncoated. A11 las- 
ing tests were performed with 3 inches of the rods pumped 
by "flat-topped" pump pulses of from 50 to 300 ps dura- 
tion and maximum pump energies of 120 J. The reflector 
was a single ellipse; the rod was pumped with a single 
xenon-filled flashlamp which was also */4 by 3 inches. 

The high reflector had measured reflectivities of 
99.7% at 2.94 p and 98.8% at 2.80 p. The output cou- 
pler was a dielectricauted CaF2 mirror with reflectivities 
of 89.5% at 2.94 pn and 87.8% at 2.80 p. The spacing 
between these two mirrors was 30 cm. Both mirrors used 
in these experiments were flat. There were no active 
focusing elements in Lhe cavity; thermal lensing of the 
laser rod provided the only stabilization. 

During some of the Er:YAG and (Er, Ho):YAG laser 
tests, the laser cavity was enclosed in a dry box which was 
filled with cold, dry N2 gas (taken from a liquid nitrogen 
tank). This lowered the temperature o€ the atmosphere 
inside the laser cavity to about -20" C and displaced some 
of the air. This caused a reduction by a factor of about 20 
in the amount of water vapor in the atmosphere and about 
50% in the amount of C R .  We hoped to reduce the intra- 
cavity absorption of laser radiation by this technique. 

The output of the laser was directed into a 0.27-m 
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monochromator for wavelength selection. The monochro- 
mator, employing lO-pm slits, had a rptabi l i ty  of about 
f O.OOO4 p, and was calibrated in place with a 594.1- 
HeNe laser. 

Results and Discussion 

We fis t  noticedl the two 2.94-c~n laser wavelengths of 
erbium-doped YAG in an (Er, Ho):YAG crystal. The 
wavelengths we measured were 2.9362 f 0.002 and 
2.9386 f 0.002 p. These correspond to energy transi- 
tions of 3405.8 f 2.3 and 3403.0 f 2.3 cm-1, respectively. 
As seen in Fig. 1, these two lines correspond to the tran- 
sitions A2-Yg (3405.5 cm-1) and A2-Y7 (3402.7 
cm-l). These transitions were then o b m e d  indepdent- 
ly in (Er, Nd):YAG and Er:YAG. We discovered that the 
laser wavelengths did not shift significantly with 
co-dopant or with Er3+ concentration. In addition, the 
wavelengths did not shift when we purged the dry box 
with cold, dry nitrogen. 

It is interesting that these wavelengths did not shift 
when the Er3+ was co-doped with Ho3+ and Nd3+, or 
when the concentration of Er3+ was changed (over a range 
of a factor of three). This is not what we expected. A pre- 
viow paper2 reported a slight shift of the 2 . 9 9  E?+ las- 
ing wavelength with concentration and an0ther3 describes 
a broadening of the 1.06-p Nd:YAG lasing wavelength 
when c d o p e d  with E?+. 

We only observed the two 2.8-p wavelength lines in 
(€3. Ho):YAG. The wavelengths were 2.7956 f 0.002 and 
2.7655 f 0.002 pn (3577.0 f 2.3 and 3616.0 f 2.3 cm-l, 
respectively). These transitions correspond to A3-Y4 
(3577.9 cm-l) and As-Y5 (3614.5 cm-l), as can be 
determined !tom Fig. 1. 

The observed lasing wavelengths, together with pre- 
viously published da& and this experiment's transmission 
specmscopy, enable us to define the energy levels of Er3+ 
in YAG at rmm temperature as in Fig. 1. 

It is interesting to note differences in the lasing and 
fluorescence behavior of the three materials discussed 
here, Er:YAG, (Er, Nd):YAG, and (Er, Ho):YAG. Even 
without codopants, high-concenmtion kYAG has inter- 
esting lasing behavior ( s e  Fig. 2). When pumped well 
above threshold, lasing begins well after the start of pump- 
ing, and continues at approximately the same intensity 
until the pump ends. Near threshold, however, lasing starts 
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Figure 1. Energy Levels of Er3+ in YAG at 300 K. 

(a) Near threshold. (b) Above threshold. 

Figure 2. Er:YAG lasing waveforms. 

and ends noticeably after the middle of the pump pulse. 
This behavior does not appear to be related to Er3+ con- 
centration. The lasing behavior of Er:YAG, as well as its 
nonlinear fluorescence decay (Figs. 3 and 4), are 
explained5 by energy transfer between Er3+ ions. 

When Ho3+ is added as a codopant, both the lasing 
(Fig. 5) and the fluorescence decay (Figs. 6 and 7) behav- 
ior change. The 2.94-pm lasing occurs during the fist 
half of the 300-p pump pulse, and the 2.80-pm lasing 
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Figure 5. (Er, Ho):YAG lasing waveforms. 
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Figure 3. Fluorescence of the 4111/2 level in Er:YAG. 
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Figure 4. Fluorescence of the 4113n level in Er:YAG. 

occurs only after the 2.94-pn lasing has stopped. As the 
input is increased to well above threshold (Fig. 5b), the 
2.94-p lasing begins earlier and the 2.80-pn lasing later, 
but a delay remains between the end of the former and the 
start of the latter. This lasing behavior, and the near-lin- 
earity of the fluorescence decays, are explainedl by cross- 
relaxation between Er3+ and Ho3+ ions. 

The 2.94-j~n lasing of (Er, Nd):YAG was typical. At 
low input energia the lasing began late in the pump pulse, 
almost on its falling edge. At higher input energies, the 
lasing began m n e r  and continued longer, always ending 
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Figure 6. Fluorescence of the 411 1/2 in (Er, Ho):YAG. 
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Figure 7. Fluorescence of the 4113/2 in (Er, Ho):YAG. 
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Conclusions 
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Figure 8. Fluorescence of the 4111/2 in (Er, Nd):YAG. 

by the time the pump pulse fell to the threshold energy for 
lasing. The 2.936 and 2.939 p wavelengths could be 
separated by a monochromator and could be maximized 
individually by tuning of the cavity. The optimal condi- 
tions for one wavelength were poor for the other wave- 
length, so the two were easily discernable. This difference 
from the lasing performance of the other Er3+-doped 
materials we tested, and the extreme shortening of the flu- 
orescence lifetimes (see Figs. 8 and 9), are explained6 by 
the strength of the energy transfer processes between Er3+ 
and Nd3+ in this material. 
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Figure 9. Fluorescence of the 4113/2 in (Er, Nd):YAG. 

We studied lasing behavior of three solid-state laser mate 
rials: Er:YAG, (Er, Ho):YAG, and (Er, Nd):YAG. All 
three demonstrated multiplewavelength 3-pn lasing, in 
contrast to (Er, Nd):YA103. The two 2.94-pm lasing 
wavelengths of these three materials were identical within 
experimental error, and imply particular energy separations 
between certain Stark sublevels of the 411n and 411z lev- 
els of Er3+. When we combine these separations with 
transmission spectroscopy, we are able to assign energies 
to all the Stark sublevels of the Er3+ 4111/2, 411z, and 
411= in YAG at room temperature. 
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