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ABSTRACT 
Photorefractive optical amplification, while useful, is a slow process. Under some circumstances, however, it amplifies 
optical signals effectively even when one is modulated at a relatively high frequency. We determine the reasons for this 
capability (what we have called the “Fast Photorefractive Effect”) and analyze its enhanced bandwidth, improvements 
over standard photorefractivity, and limitations. 

1. Introduction 
Photorefractivity is a well-known optical amplification system, high gain1, 2 and low noise3, 4.  It is generally considered 
to be a slow process, whether limited by the power of the writing beams or the characteristics of the photorefractive 
material5.  Typical values of the grating writing or erase speed in, for example, BaTiO3, are 0.1-10 s (over a beam 
irradiance range 0.1-10 W/cm2)6.  For Cu:(KxNa1-x)2a(SryBa1-y)1-aNb2O6 (Cu:KNSBN), the writing speed typically runs 
from 0.2-1 s over this same irradiance range7, 8.  If the amplification properties of the photorefractive material requires 
rewriting the grating, then, these materials limit the amplification bandwidth to <10 Hz.  Our initial experiments with 
Cu:KNSBN, however, demonstrated an amplification bandwidth exceeding 1 MHz9.  We detected very small 
photorefractive amplification of signals at even larger frequency offsets, even as great as 73 THz (reference at 532 nm, 
signal at 612 nm, amplified signal at 532 nm), although signals at 10 THz offset and larger were only slightly amplified. 
 
Further experimentation demonstrated that our photorefractive amplifier had power gain between 30 and 35 over the 
frequency range dc-4.0 MHz (limited by the modulator).  The experiments showed that the high frequency gain was 
only seen in phase-modulated (vibration-like) signals, rather than frequency-modulated (communication-like) signals.  
A redesign of the system, producing a static grating in the photorefractive crystal, demonstrated amplification of 
frequency-modulated signals with bandwidth approaching that of the phase-modulated signals.  Pouet et al. 
demonstrated photorefractive amplification with at least 70 MHz bandwidth in Bi12SiO20 (BSO) and Bi12GeO20 (BGO), 
with a static photorefractive grating10.  We have also determined the mechanism of this Fast Photorefractive Effect, and 
present a theory predicting its limits. 

2. Background and Theory 

2.1. Photorefractivity 
The basic theory of photorefractive amplification is contained in the Standard Model of Photorefractivity (STPM)11, 12.  
According to the STPM, a photorefractive material essentially acts as a doped semiconductor (Fig. 1).  The host 
material bandgap must be large enough that it is transparent at the wavelength to be used for photorefractivity.  The 
dopant bandgap, however, must be less than this wavelength.  Ideally, the illumination wavelength is sufficient to excite 
a dopant into the host material conduction band (assuming the carriers are electrons).  Then it is possible to trap the 
excited ion in a trapping level, where the dark lifetime is long.  The dopant is ionized where the illumination is 
strongest; if the illumination is in the form of a sinusoidal grating, the excited ions are formed in the bright regions.  
They do not collect in these areas, however, since the illumination can deexcite them as easily as it excited them.  Some 
of the excited ions, however, diffuse to areas where the illumination is dark.  These can maintain their excitation for 
long periods. 
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Fig. 1.  Energy Diagram for Photorefractive Material. 

 
With illumination due to a sinusoidal grating, then, the electrons ionized from the dopant into trapping levels collect in 
the darker areas; at low levels of excitation, the increase in electron density very roughly approximates the negative of 
the grating – so the electric field induced by these moved charges (the space-charge field) roughly approximates the 
illumination irradiance.  If the illumination grating is static, the space-charge field is also static. 
 
Another requirement on the host is to have a large first-order electro-optic effect.  The sinusoidal space-charge field 
then induces a sinusoidal modulation of the refractive index of the host material, creating a grating in the refractive 
index, which then functions as a phase grating (since optical path length—and, thus, the phase of a beam passing 
through that area—is just the refractive index multiplied by the physical path length).  The photorefractive medium is 
likely to be optically thick, so the space-charge induced phase grating is simply a thick Bragg grating.  It can then be 
analyzed using standard Bragg grating techniques. 

2.2. Phase Modulation vs. Frequency Modulation 
A key discovery of the Fast Photorefractive Effect is that, in the case of two-beam mixing, it applies to phase-modulated 
signals only, not frequency-modulated.  Since the initial recognition of this effect was in studying vibrometry, it was 
necessary to understand the reason behind this difference.  To do so, we first study the difference between these two 
types of modulation, what can cause them, and what the difference is in their effects. 
 
For simplicity we describe a simple experiment that can use either phase or frequency modulation (Fig. 2).  A coherent 
illumination beam (from a laser) is passed through a beamsplitter that, in this layout, reflects the vast majority of the 
beam into the reference and transmits only a small part (the signal).  The signal is then modulated by either a phase 
modulator or a frequency modulator.  Two turning mirrors direct the signal to meet the reference; the two beams 
overlap inside the photorefractive material.  The amplified signal is then measured at the readout screen. 
 

 
Fig. 2.  Modulation Measurement Experiment Concept. 

 
The initial beam, modeled as a single-frequency laser, satisfies the equation 
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where the amplitude is A, the frequency is   ! " # 2$ = c % , the initial beam propagates in the +z-direction, and the 
propagation is in air so the propagation constant is   k = 2! / " .  The beam reflected from the beamsplitter (the 
reference) then propagates in the +x direction.  Since eq. (1) implicitly defines z = 0 as the origin of the laser beam, the 
equation of the reference beam is 

 
  
ER x, t( ) = RAexp !i "t ! kz0 ! kx( )#$ %& , (2) 

where R is the reflectance of the beamsplitter and (x, z) = (0, z0) is the location of the beamsplitter.  The portion of the 
beam transmitted by the beamsplitter is then 

 
  
E1 z, t( ) = 1! R( ) Aexp !i "t ! kz( )#$ %& . (3) 

The beam after the modulator depends on the type of modulation.  For frequency modulation at offset Δω, it is 

 
  
EFM z, t( ) = 1! R( ) Aexp !i " + #"( ) t ! kz$% &'{ } , (4) 

while a phase-modulated beam with offset ϕ(t) is 

 
  
EPM z, t( ) = 1! R( ) Aexp !i "t ! kz !# t( )$% &'{ } . (5) 

Assuming perfectly reflecting mirrors, the signal beam entering the photorefractive crystal will then be described by the 
equation 

 
  
ES ,FM z, t( ) = 1! R( ) Aexp !i " + #"( ) t + kz ! kx0

$% &'{ }  (6) 

(the sign change on kz is a result of the change in direction) or 

 
  
ES ,PM z, t( ) = 1! R( ) Aexp !i "t + kz ! kx0 !# t( )$% &'{ } . (7) 

Eqs. (6-7) assume that the offset between the outgoing and returning signal beams is x0.  The capability of the grating to 
form, and therefore the photorefractive amplification, will depend on the difference in frequency between ER and ES

13.  
The reference beam operates at a single frequency, ω.  The frequency-modulated signal beam also operates at only a 
single frequency, ω + Δω.  Clearly, the frequency difference between these two beams is Δω.  The grating formed 
within the photorefractive medium will be a “running grating” at frequency Δω. 
 
The situation is different, however, with the phase-modulated signal of eq. (7).  To determine the frequency shift of this 
beam it is necessary to decompose the phase modulation into its frequency components.  We know that we can define 
ϕ(t) in terms of its Fourier components.  For simplicity, and because it describes a common vibrational case, we assume 

 
  
! t( ) = ka sin "V t( ) , (8) 

in other words, that the phase modulation is sinusoidal.  The parameter a can be the amplitude of the specific Fourier 
component.  Using eq. (8), then, the relevant part of eq. (7) is 

 
  
EPM ,rel = exp ika sin !V t( )"# $% . (9) 
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Eq. (8) can be decomposed into frequency components using Jacobi-Anger expansion (which is the Fourier sum that 
results in the exponential)14, 

 
  
exp i! sin"( ) = Jm !( )exp im"( )m=#$

$% , (10) 

where Jm(ζ) is the mth-order Bessel function of the first kind.  Clearly, translating from eq. (9) to eq. (10), ζ = ka and 
θ = ωVt.  In other words, we can decompose eq. (9) into 

 
  
exp ika sin !V t( )"# $% = Jm ka( )exp im!V t( )m=&'

'( , (11) 

the Fourier decomposition with amplitudes Jm(ka) and frequencies mωVt.  Thus, while frequency modulation results in a 
single running grating at frequency Δω, phase modulation results in an infinite sum of gratings at frequencies mωV, 
where m runs from -∞ to ∞. 
 
The Bessel function of the first kind has two interesting properties that affect this analysis.  First, only J0 has any 
amplitude at 0; Jm(0) = 0 for m ≠ 0.  In other words, very small vibrations produce only the zero-frequency component 
of eq. (11).  Second, in general, the amplitude of Jm(z) decays as e-m (Fig. 3); even in relatively large vibration, around 
half the total power of this frequency decomposition occurs in the zero-frequency component.  Thus, if the signal is 
phase-modulated, there will always be a large component that forms a static grating when forming an interference 
pattern with the reference.  This static grating, then, becomes the main photorefractive grating; the portions of the signal 
that are at other frequencies can still be amplified, as described in Section 2.3. 
 

 
Fig. 3.  Bessel Amplitude as a Function of Order. 

 

2.3. Kogelnik’s Theory of Bragg Gratings 
In 1969, Kogelnik published the theory of beams diffracted from a thick sinusoidal grating15, which he called a 
“hologram grating.”  This theory can be applied to photorefractive materials, as long as the following three assumptions 
can be made: 

1. The modulation of the refractive index is small.  Specifically, if we write 
  
n = n0 + n1 cos 2!" / #( ) , where n0 is 

the refractive index in the absence of illumination, ζ is the length along the grating gradient, and Λ is the 
grating period, the modulation must satisfy 

   n1 ! n0 . 
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2. The grating is almost a pure phase grating, with low absorption in the material.  If α is the absorptivity, the 
material must satisfy 

   ! ! 2"n0 / # . 
3. The grating is sinusoidal.  This assumption is valid as long as the ionized population is small compared to the 

overall dopant population.  If N0 is the total dopant population, and N1 is the population of dopant in the 
trapping levels, this requirement means 

   N1 ! N0 . 
If we further assume that the reference and signal beams are meeting near the Bragg angle—guaranteed for the 
photorefractive effect using beams at the same wavelength—there is perfect coupling between the beams.  In the ideal 
case, the two beams themselves are each 90° out of phase with the grating; one is 90° advanced, the other 90° retarded.  
Then power will be transferred with the highest efficiency from the advanced beam to the retarded beam.  This is clear 
from eq. (4-7); if the beam phase is 90° advanced, k becomes ik, and the exponential includes a term e–kz.  Likewise, the 
retarded beam includes a term e+kz.  This is the source of the power transfer from the reference to the signal beam (if the 
photorefractive amplifier is set up correctly. 
 
Given that the photorefractive amplifier meets the three requirements listed above, Kogelnik’s theory can be combined 
with the STPM to determine the single-pass, two-beam amplification through a photorefractive amplifier.  Fig. 4 shows 
the geometry used in the following calculations. 
 

 
Fig. 4.  Photorefractive Amplification Layout. 

 
Using the parameters d for the interaction length within the photorefractive medium (d = z0/cosθ in this layout), 2θ for 
the angle between the signal and reference beams (inside the photorefractive medium), Δθ for the divergence (or 
convergence) angle of the signal beam (we assume the reference is a perfect plane wave), and define the grating contrast 
as 

 
  
m ! 2cos 2"

IR IS

IR + IS
# 2cos 2"

IS
IR

, (12) 

where IR and IS are the irradiances of the reference and signal beams respectively, we find the amplification to be 

 
  
g pr = 1+ 1

m4

n1
22

n1
2 + !" 2 tan2 2"

sin2 #d
$ cos"

n1
2 cos2 2" + !" 2 sin2 "

%
&'

(
)*

. (13) 

Eq. (13) contains three parts:  (1) the unity amplification expected under conditions under which there is no energy 

transfer, a 1/m4 factor describing the maximum amplification [an approximation to 
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amplification at angles outside the acceptance angle.  Fig. 5 shows an example of efficiency using parameters that 
match our experiment:  Δn ≈ 5.63×10–4, θ = 165 mr (calculated from outside angle of 22.5° and refractive index of 
2.33), d = 4.06 mm (crystal thickness 4.00 mm), λ = 488.0 nm.  The initial cutoff—what could normally be considered 
the half acceptance angle—is 1.68 mr.  Nonetheless, the efficiency exceeds 5% of maximum at angles as large as 4.25 
mr, more than 2.5× greater than the normal definition of acceptance angle. 
 

 
Fig. 5.  Photorefractive Acceptance Angle for 4.0-mm Crystal. 

 
Another important fact is that the diffraction efficiency—and its values at higher divergence angles—is dependent on 
the interaction length.  If the crystal thickness is changed from 4.00 mm to 4.50 mm, the resulting diffraction efficiency 
plot becomes that shown in Fig. 6. 
 

 
Fig. 6.  Photorefractive Acceptance Angle for 4.5-mm Crystal. 

 
Wavelength shifts can have the same effect as divergence.  Assuming the signal beam diameter is 2 mm, for the 
experiment described above, the signal beam divergence angle will be 156 µr.  This system will have significant 
amplification even at wavelengths 25 nm away from the reference beam.  Fig. 7 shows the amplification over this 
bandwidth, which (based on 488 nm illumination) corresponds to a frequency shift of 30 THz.  Note that, in our initial 
experiments mentioned above, we saw amplification of a signal centered 80 nm away from the reference.  This model 
indicates that, with the pump at 532 nm, an input signal at 612 nm would generate an output at 532 nm with 
approximately 40% the irradiance of the signal. 
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Fig. 7.  Photorefractive Amplification Bandwidth. 

3. Experiment 
As described above, we performed two sets of experiments.  The first, which has been referred to as the initial 
experiments, used a reference beam at 532 nm, and was a three-wave mixing experiment.  The second used reference at 
488 nm and was a pure two-wave mixing experiment, with the signal having either frequency or phase modulation. 

3.1. Three-Wave Experiment 
The experiment at 532 nm used the setup shown in Fig. 8.  The reference laser was a frequency-doubled Nd:YVO4 laser 
operating at 532.1 nm with a beam diameter of 2 mm, operating in single longitudinal mode with a linewidth of 5 kHz.  
The beamsplitter transmitted 98% of the reference, reflecting 2%.  Half of this beam was reflected by the 50% mirror, 
forming the coherent signal, whose power was 1% of the original beam.  In the absence of output from the non-coherent 
laser, interference between the reference and the coherent signal formed a photorefractive grating in the crystal. 
 

 
Fig. 8.  Layout of Preliminary Experiment. 

 
The non-coherent laser generated one of five other signals:  (1) 532 nm from another doubled Nd:YVO4 laser, not 
coherent with the reference; (2) 543 nm from a green HeNe laser; (3) 594 nm (yellow) from another HeNe laser; (4) 612 
nm from the same HeNe laser as the 594-nm signal; and (5) 633 nm from another HeNe laser.  Results of the 
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amplification experiment appear in Table 1.  The model was relatively accurate in predicting amplification at 
wavelengths close to the reference, but underestimated the amplification at longer wavelengths.  In particular, the model 
predicted amplification at 594 nm to be less than half amplification for a 543-nm signal, but measurements showed the 
two amplifications to be nearly the same. 
 

Table 1.  Amplification in Preliminary Experiment. 
Non-Coherent Laser Wavelength Raw Amplification 532-nm Amplification Predicted 532-nm Amplification 

532 nm 42 41 41.3 
543 nm 2.3 1.3 1.34 
594 nm 2.4 1.4 0.55 
612 nm 1.7 0.7 0.35 
633 nm 1.0 0 0.03 

 
The most important output of this experiment, however, is the amplification of an independent, non-coherent signal at 
the same nominal wavelength as the reference.  This demonstrates that, with three-wave mixing, where a static 
photorefractive grating is created, a completely independent signal can be amplified, agreeing with Fig. 7.  This 
experiment demonstrated that a low-SNR signal from a separate source can be amplified, even though it is not coherent 
with the reference, when three-wave mixing is used.  There are significant applications in the communications field. 

3.2. Four-Wave Experiment 
To demonstrate the capability of the Fast Photorefractive Effect to measure vibration, a four-wave mixing experiment 
was performed.  In this case, the reference was an Ar+ ion laser operating in single-frequency mode at 514.5 nm, with a 
linewidth of 1 MHz.  The layout of this experiment is shown in Fig. 9.  In this experiment, the beam from the laser first 
passed through a beamsplitter, separating it into reference (90% of the power) and signal (10% of the power) beams.  
The reference then was directed to a Cu:KNSBN crystal which was used in phase conjugation mode.  A mirror on the 
other side of the crystal retroreflected the portion of the reference that passed through, interference between the forward 
and retroreflected portions forming a static grating in the crystal along its c-axis.  The signal reflected from a mirror 
mounted on a piezoelectric transducer (PZT).  That beam passed through a 50-50 beamsplitter before encountering the 
KNSBN crystal.  The reflected half of the signal was then retroreflected to illuminate a detector.  The transmitted half 
struck the KNSBN crystal, and a photorefractively amplified phase conjugate signal was produced, traveling back along 
the original signal path.  Half of this beam was directed to the detector, where it formed an interference pattern with the 
portion of the signal that was retroreflected.  Temporal variations in the interference pattern were captured by the 
detector and interpreted as signals at nonzero frequency. 
 

 
Fig. 9.  Optical Layout of Four-Wave Experiment. 

 
Motion of the PZT was adjustable.  At the highest frequency we could use, 10 kHz, full-range motion was limited to 
about ±1 µm, and we restricted the motion at other frequencies to match it.  Driving the PZT at 1 Hz for a baseline 
comparison, we found a phase conjugate signal similar to what we expected, with the highest peak at dc, strong peaks at 
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2 and 4 Hz, and slightly weaker peaks at 1 and 5 Hz (Fig. 10).  The exact predicted response would have had stronger 
peaks at 1 Hz, with the response decreasing at higher frequencies. 
 

 
Fig. 10.  Frequency Response of Four-Wave Mixing Experiment at 1 Hz. 

 
To test the vibration measurement capabilities, these experiments were repeated at PZT drive frequencies of 10 Hz, 100 
Hz, 10 kHz, and 100 kHz (Fig. 11).  Again, the results were similar to predictions.  At PZT drive frequencies of 10 Hz 
and 10 kHz, the response is almost exactly what we would predict.  At 100 Hz, there are some artifacts at lower 
frequencies (~25 Hz), surrounding the three large peaks at dc and ±100 Hz.  The 1-kHz test shows a pattern similar to 
that shown in the 1-Hz experiment (Fig. 10), where the even-numbered peaks are stronger than the odd-numbered 
peaks.  At 10 kHz, the peaks fit nearly a perfect Bessel function. 
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(c) 

 
(d) 

Fig. 11.  Four-Wave Amplification of Vibration Signals at (a) 10 Hz, (b) 100 Hz, (c) 1 kHz, and (d) 10 kHz. 
 

We attribute the addition peaks at 100 Hz to vibration; the same results were seen using just the raw signal and the 
mirror.  The different shapes of the responses, where some harmonics are deemphasized, is the result of specific 
amplitudes and phases of the vibrational signal.  Eq. (11) lists the mth Fourier coefficient of the vibrational signal as 
Jm(ka), where k is the propagation constant and a is the vibrational amplitude.  Different orders of the Bessel function 
have zeroes at different locations, so the coefficients could be reduced.  In addition, the analysis was specifically for 
vibration as a sine function.  The constant phase could change this to a cosine or a combination of the two, which would 
affect which coefficients are large and which are small.  In any case, this experiment demonstrated clear capture of 
vibrational signatures up to 10 kHz using photorefractivity in a four-wave configuration.  The 10-kHz limit was 
imposed by the PZT, not the optical system. 

3.3. Two-Wave Experiment 
Another experiment was performed, this time with the reference laser operating at 488.0 nm (Ar+ ion laser).  Its beam 
diameter was 2 mm and its linewidth was 3 GHz. We tested a photorefractive crystal, Cu:KNSBN, under illumination at 
488.0 nm from a single-frequency argon laser.  The crystal chemistry was studied by electron diffraction spectroscopy 
at the University of California, Irvine, spectroscopy facility, and determined to have the formula 
(K0.45Na0.55)0.16(Sr0.78Ba0.22)0.92Nb2O6.  In other words, using the standard formula listed in Section 1, the parameters are 
x = 0.45, a = 0.08, and y = 0.78.  We measured the refractive indices at 488.0 nm to be ne = 2.33234±0.00558 and 
no = 2.38091±0.01851.  The linear electro-optic coefficients are r13 = 50 pm/V, r42 = 400 pm/V, and r33 = 270 pm/V16.  
We measured the mass density of the crystal to be 6.33 g/cm3.  The Cu doping was nominally 0.04% by weight, 
corresponding to Cu+ ion density of 1.92×1019 cm-3.  The crystal measured 4 mm × 5 mm × 6 mm, with its c-axis along 
the 6-mm length.  All experiments were performed at controlled room temperature, 297K. 
 
The experimental layout is shown in Fig. 12.  Each beam made an angle of π/8 (22.5°) with the normal to the crystal 
face.  Based on this and the measure refractive index, the angle each beam made with the surface normal inside the 
crystal was 165 mr (9.45°).  The beams were polarized in the plane of incidence, resulting in a photorefractive grating 
whose gradient was in the same direction as the crystal optical axis, and ensuring that the refractive index to be used 
was the extraordinary index.  The irradiance of the reference beam, I0, was 8.15 W/cm2 and that of the signal beam, I1, 
was 97.8 mW/cm2.  The expected interference pattern contrast, then, was 0.216. 
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Fig. 12.  Layout of Modulation Experiment. 

 
Given the material and layout parameters, single-pass amplification of ~35 was predicted for the beam without 
frequency shifting.  Our measurements showed steady-state amplification of 33.5, well within the experimental error.  
When we blocked the reference beam, then observed the amplified signal as we unblocked the reference, we determined 
that the amplification had a response time of 0.2323 s (from 0 to 1-e-1 of final output).  From this we estimated that, 
with total input irradiance I0 + I1 = 8.25 W/cm2, amplification of signals with frequencies slightly different from that of 
the reference would have a bandwidth of 4.305 Hz. 
 
We then tested the response using a pure frequency shift.  We ran a logarithmic sweep from Δν = 0 to 20 Hz.  
Traditional photorefractive modeling predicted that amplification would drop exponentially with frequency shift.  The 
gain of this system matched the exponential model to an accuracy of 98.6% (Fig. 13), and the exponential decay 
corresponded to the predicted 4.3-Hz bandwidth. 
 

 
Fig. 13.  Measured (Solid Line) and Modeled (Dashed Line) Photorefractive Frequency Response. 

 
We then repeated the experiment, but instead of modulating the frequency we used a phase modulator.  Thus, instead of 
a frequency shift, we generated a pure phase shift, modulating the phase with a sine wave.  We anticipated that the 
phase modulation signal would be relatively constant.  We therefore kept the maximum phase modulation constant at ~3 
radians (purposely modulating it less than 180°).  The phase modulation frequency was also scanned from 0 to 20 Hz 
(Fig. 14), and the modulation signal showed no significant deviation from the constant value.  The effective 
amplification of this part of the signal was ~33. 
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Fig. 14.  Amplification of a Phase Modulated Signal. 

 
The parameters of this experiment, assuming diffusion limit, indicate that the internal electric field amplitude is 
Esc = 3.57 V/cm, resulting in a refractive index modulation of 5.215×10-4.  The Kogelnik model predicts an acceptance 
angle of 0.529 mr (1.79 arc minutes), wavelength acceptance of 0.661 nm, and amplification bandwidth of 832 GHz.  
This was far beyond our measurement capabilities.  We were able to drive our phase modulator up to 4 MHz without 
significant loss of modulation depth (Fig. 15).  Over this range, the gain was 32 within ±3%, plus one dip around 1.1 
MHz.  Even that dip was only to 29.5, 8% below the average gain. 
 

 
Fig. 15.  Photorefractive Amplification at High Frequency. 

 
This experiment demonstrated that the phase modulation model using Jacobi-Anger expansion is correct, since phase-
modulated signals at up to 4 MHz were amplified within 5% of the dc gain, while frequency-modulated signal 
amplification decayed with frequency with the expected exponential signature.  The bandwidth matched the prediction 
to within experimental error.  The experiment also demonstrated that even high-frequency phase-modulated signals can 
be amplified with a photorefractive system.  This has direct application to vibrometry. 

4. Summary and Conclusions 
We have demonstrated high-quality photorefractive amplification at frequencies that would normally be considered 
much too high for use in photorefractivity.  In three experiments—one using two-wave mixing, another with three-
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wave, and the third with four-wave mixing—we were able to demonstrate photorefractive amplification of a pure 
vibrational signature at up to 10 kHz, a phase modulation signal (modeling a vibrational signature) at up to 4 MHz, and 
of non-coherent, external signals at frequency offsets up to 73 THz.  We present a model of how this works, whether in 
two-wave mixing (phase-modulated and vibration signals only), or three-wave or four-wave mixing (vibration, phase-
modulated, and frequency-modulated signals).  The model fit is relatively good.  These experiments have shown that the 
Fast Photorefractive Effect is useful for photorefractive amplification at high frequencies, and could be useful in a 
multitude of field, such as vibration testing and communications. 
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