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Abstract. There is a constant search for a more accurate measurement,
which generally leads to higher cost, greater complexity, or devices that
do not lend themselves to manufacturing environments. We present a
method of using statistical sampling to improve metrological accuracy
without these undesirable effects. For metrology of flat surfaces and steps
between flat surfaces, this method demonstrated precision improvement
up to a factor of 55, and accuracy increase of at least a factor of 10.
The corresponding precision and accuracy improvements on a spherical
surface were both factors of 8. Since this accuracy improvement can be
implemented in software, it does not affect the speed of measurement
or the complexity of the hardware, and it can be used to improve the
accuracy of a wide range of metrology systems. C 2011 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602901]
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1 Introduction
Metrology can be defined as the science of measure-
ment. This paper specifically discusses dimensional mea-
surement of surfaces, which can be used to determine three-
dimensional shape, thickness, and other parameters. This
is an important science, from the simple measurements of
coins, to more difficult measurements on vehicles, to ultra-
precise metrology of semiconductor surfaces. Metrology can
be used in automobile manufacturing,1 aircraft assembly,2

high-resolution lithography,3 and nondestructive evaluation.4

In general, however, there is a tradeoff among various capa-
bilities of a metrology system, particularly among the pa-
rameters of system complexity, measurement accuracy, and
measurement speed.

It is possible to improve the accuracy through direct trade-
offs. For example, increasing the time for a single measure-
ment can reduce the noise in the measurement; covering a
larger area with a single measurement can also reduce the
noise. These methods, however, fail in specific cases; un-
der conditions of high vibration, increasing the measurement
time can actually increase the noise, and if a certain resolu-
tion is needed, increasing the measurement area beyond this
reduces the measurement accuracy.

The method described here is a version of statistical
smoothing. On a flat surface, for example, if N measurements
of height are taken at different locations in the plane of the
surface, those measurements can be averaged to increase the
height precision by a factor of √N . On a smoothly curved
surface, similar precision improvements can be achieved—
indeed, as long as the nominal shape of the surface is known,
increases in precision are easy. Increases in accuracy, how-
ever, are not quite so simple; only if the random errors in-
duced by the metrology system are independent and zero-
mean will accuracy increase as much as precision. Even when
the errors have a bias, significant increases in accuracy can
be obtained; in these cases, however, precision is improved
more than accuracy.
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2 Technology Tradeoff
Almost any surface metrology system can have its accuracy
improved through statistical methods. Most such systems
produce a number of points describing the x (horizontal—left
and right), y (distance—front and back), and z (height—up
and down) measurement of the surface (a point cloud). Sta-
tistical methods can reduce noise by combining a number
of measurements at a point—and these measurements can
be separated in time or in space. In many cases, such as an
environment with a significant level of vibration, averaging
a number of points taken at the same time produces a better
result. If, for example, the vibration has a small amplitude
of 125 µm at a frequency of 20 Hz, a measurement sample
time, or time between measurements, of 1 ms results in an in-
herent measurement inaccuracy of ± 5 µm due to the surface
motion; longer periods are even worse. If the time between
measurements is 1 ms and there are 100 measurements, this
small vibration will show up as a measurement error of up to
250 µm. Since the vibration may not be random, time-based
averaging techniques may not remove this error.

The first step in improving the accuracy of the metrol-
ogy system is to select the technology with the best com-
bined attributes of accuracy and speed. For measurements in
an environment with significant vibration, a comparison of
technologies (Table 1) shows white light stereovision with a
projected pattern (WLSPP) to be the best choice; if vibration
is not a factor, the highest resolution comes from interfer-
ometry. All the results presented in this paper use WLSPP to
generate the point cloud, although the statistical smoothing
can be applied to any measurement technology that creates a
point cloud.

The values in Table 1 are taken from experimentation
using typical devices, and all accuracies listed are at 3σ
(99.7% of all measurements fall within ± 3σ). Devices that
use physical contact, such as the coordinate measurement
machine (CMM), can increase the depth of field by increasing
the size of the machine. Tomography can also be scaled to
larger sizes by using larger machinery, but optical alignment
becomes difficult.
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Table 1 Potential metrological technologies.

Technology Sample rate Accuracy Depth of field

Interferometry 1 point/1 ms ± 5 nm 500 nm

Tomography 1 point/1.3 s ± 2.1 µm 10 cm

CMM 0.1 mm2/5 s ± 1.4 µm 30 cm

CMM on portable arm 3 mm2/2 s ± 24 µm 2 m

Pulsed laser radar 1 point/5 ns ± 5 mm > 10 m

Laser scanner 1000 mm2/5 s ± 18 µm 10 cm

Sonar 250 mm2/10 µs ± 350 µm 2 m

WLSPP 2500 cm2/1 ms ± 18 µm 23 cm

As can be seen from Table 1, the compared technology
with the best accuracy is interferometry. Our example of
interferometry is a simple Mach–Zender system using laser
illumination at 532.1 nm; other interferometric systems, such
as shearography, speckle interferometry, and holographic in-
terferometry, have other limitations on speed and/or accuracy.
For full accuracy, Mach–Zender interferometry is a point (or
small area) measurement system, making it potentially too
slow to use for large areas or in a high-vibration environment.
Interferometry, as well, has such a small depth of field that a
large step cannot be measured; it is possible for vibration to
move the target enough that the interferometric measurement
is no longer valid. Tomography—broadband interferometry
with low coherence, so that a signal only appears when the in-
terferometer arms are very nearly the same length—falls into
the same category; although it can measure a large depth of
field in a single measurement, it is very slow (due to the need
to scan a mirror, changing the optical length of one arm), and
each measurement is a point rather than an area. The CMM
has excellent accuracy and tiling capabilities, but is immo-
bile and slow (our comparison machine was the Brown and
Sharpe Global Advantage); a portable version of a CMM,
using optical encoders to determine position (for example, a
Romer arm), is nearly a factor of 20 less accurate.

The next step in accuracy—at ± 18 µm in a single
measurement—is shared by the laser scanner (such as the
Leica T-Scan) and WLSPP (we tested the Hexagon WLS400
and Optigo 200). A moiré interferometer would also fit in
this category, while a structured white light scanner (like
the Capture3D ATOS) uses time-dependent phase-shifting
to accomplish the same results described in this paper with
space-dependent technology (see Sec. 3.1). The T-Scan laser
scanner is portable and its position is tracked with excellent
accuracy by a separate laser tracker. The required motion to
cover the scanned area slows this method to where it can
be affected by vibration. The other tested technologies are
not high resolution, and many are slow. The WLSPP, then,
emerges as the base technology for this measurement, with
high accuracy within a single shot, reasonable tiling accu-
racy, the largest area for a single sample, and sample time
short enough to significantly reduce the effects of vibra-
tion. It should be noted, however, that the statistical methods
described in this paper can be applied to any metrological

system that produces an array of points in space (a point
cloud), as long as the error sources (both of the measurement
and from external causes, such as vibration) are known.

3 Theory and Method
3.1 Statistical Sampling
As mentioned in Sec. 1, there is an inherent tradeoff among
complexity, speed, and accuracy. By using statistical smooth-
ing, it is possible to increase accuracy through an increase
of sample time (reduction of sample rate). It is possible as
well to increase measurement accuracy by increasing system
complexity. Examples of this include improving the shad-
ing measurement capabilities in interferometry, employing
a higher ultrasonic frequency in sonar, and increasing the
number of pixels per camera in WLSPP. In addition, using
structured white light stereovision with multiple samples, in
particular using a phase shift mask,5 can produce accuracies
as great as ± 2 µm over the field of view, at the expense of
taking several seconds to make a single measurement.

The statistical technique described here is slightly differ-
ent. A WLSPP system defines an x-y-z coordinate system,
with points defined on, for example, a 250-µm square pat-
tern (defining x and y), with accuracy of ± 18 µm in the z
direction. In many cases, there is no need for samples spaced
that closely in x and y; the actual spacing required depends on
the curvature of the surface and the measurement accuracy
needs. We found that a typical commercial curved surface
only required samples every 5 mm to allow excellent surface
fitting; this is a factor of 20 greater than the spacing produced
by the metrology system directly.

The statistical smoothing technique requires at least an ap-
proximate knowledge of the surface shape, whether provided
by an a priori estimate of this shape or through knowledge of
the surface design (nominal). Measurements are then taken
to determine the as-measured (actual) surface. The deviation
of the actual from the nominal is minimized by adjusting the
measured location of the surface, resulting in an increase in
both precision and accuracy for the actual value of the surface
at a point in the center of the area being sampled.

To determine the actual improvement, each measurement
is defined to contain three components:

z (x , y) = z0 (x , y) + zd + zr , (1)

where z0 is the actual value, zd is a deterministic error (con-
stant at that point), and zr is a random error. Further, it is
assumed that each value of zr is completely independent of
each other value; in other words, it is a truly random error, it
is noise. A nominal value at each point, zn (x , y), is defined,
whether from a known or estimated surface shape or from the
known design. The difference between the measured value
and the nominal value is

z (x , y) ≡ z (x , y) − zn (x , y)

= z0 (x , y) − zn (x , y) + zd + zr . (2)

The actual value of interest is the difference between the
actual value and the nominal value,

δz (x , y) ≡ z0 (x , y) − zn (x , y) . (3)

If N = 4ab measurements surrounding the point (x0, y0) are
taken, in (for example) a square pattern, and the difference
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values are summed, the result is
b

n=− b

a

m=− a
z (xm , yn)

=
b

n=− b

a

m=− a
[δz (xm , yn) + zd + zr ]

=
b

n=− b

a

m=− a
δz (xm , yn) + N zd +

N

i= 1
zr , (4)

where the three parts of the measurement have been sepa-
rated. The first, double sum is a collection of N measurements
of δz. The inside sum runs from –a to a, a total of 2a steps; the
outside runs from –b to b, for 2b steps. The complete double
sum, then, includes 4ab measurements, defined above as N.

Since zd is constant (or at least nearly constant in the
measurement area), summing it over N steps results in Nzd.
Since zr is random, its location does not matter, and the 4ab
measurements of the double sum can be replaced by a single
sum with N samples.

If the double sum in Eq. (4) is divided by N, the result
is the average value of δz over the area in question. The
second term, when divided by N, is just the constant error—
which can be removed, for the most part, through calibration
(except when it is an actual surface deviation from nominal).
The single sum, divided by N, is the expected error of the
measurement,

zr = µ r +
σr√

N

σr√
N

, (5)

where µ r is the mean expected error and σr is its standard
deviation. Typically (and ideally) µ r will be close to zero, so
the smoothed value becomes

1

N

b

n=− b

a

m=− a
z (xm , yn) ≈ δzab + . (6)

So, for example, if an area of 40× 40 samples (N = 1600) is
taken, with an anticipated normal distribution of the random
error, with the ± 18µm individual measurement error (at 3σ)
of a commercial WLSPP, the expected error of the sampled
measurement is 0.15 µm (6.0 µm standard deviation divided
by √1600 = 40 samples). We assume a normal probability
distribution because the Central Limit Theorem indicates that
most large random error distributions approximate a normal
distribution.6 The anticipated 3σ error range, then, has been
reduced from ± 18 µm to ± 0.45 µm. Note that this does not
require a specific surface shape, just that the nominal shape is
known. In addition, if the general form of the surface shape is
known, it is possible to use statistical curve-fitting techniques
to form a nominal surface. Finally, by applying the statistical
smoothing just to the differences between nominal and as-
measured surfaces, the surface shape becomes unimportant
to the noise reduction method.

3.2 Implementation
The statistical smoothing method, then, reduces random
noise by the square root of the number of samples averaged.
The samples to be averaged must eliminate deterministic
errors, to the greatest extent possible. Once this is accom-
plished, the remaining noise can be reduced. The smoothing
method is straightforward, and easy to implement in soft-
ware. The following steps can be used for a measurement
system that uses (x, y, z) triplets, where the location is given
by x and y and the surface measurement is z.

1. Collect a point cloud of measurements—the actual
values.

2. Determine the expected surface function—the nomi-
nal values. (This may be done by mathematical fitting,
using a known surface, calculating the CAD surface
value at each point in the measured point cloud, etc.)

3. Generate a residual dataset of points (x, y, z), with
z equal to the actual minus nominal value for each

point.

4. Determine the area over which to smooth the data.
(This area may be, for example, a circle, square, or
any shape that is easy to implement for the specific
task.)

5. Generate a subset of the “residual” dataset that in-
cludes all the data points needed, including the
smoothing area. [For example, if the smoothing area
is a circle whose radius is 1.5 mm, the subset will
be those points in the residual dataset such that the
(x, y) locations are at least 1.5 mm from the edge of
the point cloud.]

6. For each (x, y) point in the subset, calculate the mean
value of z that is within the smoothing area centered
on this point. That is the zs value—the smoothed
surface value—in the new point definition (x, y, zs).
The set of points (x, y, zn + zs) is then the new
smoothed point cloud.

3.3 Limitations
The reduction of noise in the data does have a cost. When
points are averaged in a measurement area, adjacent points
are no longer statistically independent. For spatial sampling,
N points are averaged to get a reduction factor of √N in the
noise inherent in the z measurement; to a first approximation,
the effective resolution is reduced by this same factor in both
x and y. For example, the initial point cloud measurement of
the sphere (Section 4.2) had points in a grid with 0.221 mm
spacing; in effect, after smoothing, the (x, y) resolution was
1.77 mm. This is not exact; the statistical effect of one point
on another given distance away is approximately the num-
ber of points that fall within the measurement areas of both
points, divided by the number of points in each area. Thus, for
example, in the same sphere example as above, since each
area of measurement was a circle of radius 1 mm, points
separated by > 2 mm have no relationship to each other at
all. Points separated by 1 mm are 39.1% correlated; adjacent
points are 86.0% correlated. Points separated by the calcu-
lated smoothed resolution are 14.5% correlated.

4 Experiment
4.1 Measurements of a Plane Surface
We used a WLSPP metrology system (CogniTens Optigo
200) to measure a known flat surface, specifically a gray test
flat, manufactured by QS Grimm, GmbH. This block was in
certification, defined to have surface flatness ± 6.2000 µm
over the center 10.8× 1.8-in. area.7 We tested a strip near the
center, 7-in. long and 1.5-in. wide. A scan of this strip is
shown in Fig. 1. The scan contains ∼ 9000 points. The scale
is in micrometer deviation from predicted flatness.

Over the range scanned, where the nominal errors are
± 6.2000 µm, the measured 3σ deviations from flatness are
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Fig. 1 Metrology of a flatness artifact.

± 20.0 µm. This accords with the stated metrology 3σ er-
ror of ± 18 µm in one shot, combined with the nominal
deviation. The measurement scan was then divided into 14
rectangular sections (seven horizontally, two vertically) for
statistical analysis. As described in Sec. 0, the measurement
area is a rectangle 1 in. × 0.75 in., each containing ∼ 640
points. In this case, each measurement area was resolved to
a single point.

The results are shown in Fig. 2. The mean values of the
deviations from flatness (in green) average about –0.3 µm
(short dashed line), while the standard deviations (in blue)
average 4.8 µm (long dashed line). From these measurements
we can determine statistically that the 3σ error of the WLSPP
was closer to ± 14 µm than the stated ± 18 µm, and the
deviation of the surface from flat was about 2.7 µm over
each measurement area.

4.2 Measurement of a Sphere
Next, the accuracy improvement technology was used
to study a sphere whose diameter was specified to be
1.5000 ± 0.0001 in., but whose surface was stated smooth
only to ± 0.001 in. The WLSPP metrology system (in this
case, a Hexagon WLS400) was used to scan a section of
the upper half of the sphere. To define the nominal surface,
a best-fit routine was executed; the radius was known to

Fig. 2 Statistically-smoothed flatness measurements.

Fig. 3 Comparison of surface deviation before (a) and after (b) sta-
tistical smoothing.

be 19.050 mm (0.7500 in.), reducing the complexity of the
fitting routine. The sampled area was bounded by a circle
whose diameter was 27.20 mm, and the measurement area
was a circle whose radius was 1 mm; the smoothed area,
then, was bounded by a circle whose diameter was 25.20 mm.
Based on the point cloud density, there were on average 64
measurement points in each measurement area.

The statistical process definitely smoothed the residuals
(Fig. 3). The residuals, defined by z [actual minus nominal at
each (x, y) point], are plotted with the scale in micrometer;
the (x, y) positions are in millimeter. The residual standard
deviation—the rms deviation of the actual surface from the
nominal—was 18.4 µm in the raw data, reduced to 15.8
µm in the smoothed data. Statistically, this indicates that the
3σ measurement error was significantly better than claimed
by Hexagon—approximately ± 9 µm, half the stated value
of ± 18 µm—and that the standard deviation of the surface
(compared to nominal) was about 15 µm.

Based on the estimated standard deviation of 15 µm, the
surface should (statistically) have 9.6% of its points out-
side the stated smoothness of ± 25.4 µm ( ± 0.001 in.). The
points that fall outside this range are shown in Fig. 4, with
the measured deviation, z, in µm and the position in mm.
Points that are high (> 25.4 µm above the nominal) are red;
points that are low (> 25.4 µm below the nominal)  are blue.
The raw point cloud contained 15.5% of points outside the
stated range; smoothing reduced this to 10.6%. (Assuming
this 10.6% is the correct number, the calculated standard de-
viation of the surface is 15.71 µm, close to the estimated
value of 15 µm.)

4.3 Step Gauge Test
A block with a simple half-inch (12.7-mm) step was fabri-
cated to determine the accuracy improvement of step mea-
surements (Fig. 5). This was made out of low-expansion
stainless steel.

To ensure accurate testing, four areas on the block (light-
ened areas marked U1, U2, L1, and L2) were measured on

Fig. 4 Areas outside the specified surface smoothness before (a)
and after (b) smoothing.
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Fig. 5 Step gauge block.

a CMM system with 3σ measurement accuracy ± 1.7 µm.
These measurements showed that the surfaces were not quite
flat, and that the actual steps from U2 to L2 and from U1 to
L1 were not exactly the 12.700 mm expected. It was discov-
ered that the lower level was angled slightly with respect to
the upper level, with ∼ 50 µm variation from the highest to
the lowest points in the measurement areas. The upper level
showed surface rippling of ± 7.5 µm (Fig. 6).

The step from U1 to L1, as measured by the CMM,
was 12,769.8 ± 2.1 µm (listed error includes both measure-
ment and reporting errors). Raw data from the WLSPP
(Optigo 200) produced a step of 12,772 ± 18 µm. Statisti-
cally fitting planes to each patch as measured by the WLSPP
(since the surfaces are supposed to be flat), then calculat-
ing the step from these planes, the step is calculated to be
12,771.78 ± 0.34 µm. This value is just within the step as
calculated from the CMM measurements, plus the CMM er-
ror range. The second step, from U2 to L2, was measured by
the CMM to be 12,679.1 ± 2.1 µm. The WLSPP raw mea-
surement was 12,680 ± 18 µm. With statistical sampling this
came to 12,680.22 ± 0.31 µm, again within the uncertainty
range of the CMM. Since the accuracy was improved from an
uncertainty of ± 18 µm (limited by the WLSPP) to ± 1.7 µm
(limited by the CMM), we claim an accuracy improvement
of at least 10× . From a repeatability standpoint, the WLSPP
exceeded the CMM, having 3σ precision 6.5× better. The
gauge study demonstrated that the statistical sampling used
(with 256 points each in the upper and lower measurement

Fig. 6 Flatness of the upper (a) and lower (b) level areas of the step
gage block.

patches) reduced the estimated measurement error to 1.8%
of the single-measurement error.

5 Summary and Conclusions
We have demonstrated a significant improvement in surface
measurement accuracy by applying statistical methods to
metrological point clouds. This can be considered a data
smoothing technique, in that it reduces the random errors in-
herent in any measurement. Using WLSPP metrology, with
two different metrology systems, this method was able to
improve measurement accuracy of a test flat by a factor of
five—to below the flatness specification; of a step measure-
ment by a factor of 55—to better precision than a CMM and
with comparable accuracy; and of a sphere by a factor of
eight—in both precision and accuracy.

The specific optimization method described in this pa-
per was based on the anticipated requirements for measuring
large areas, including steps exceeding 10 mm, in a high-
vibration environment. These needs led to the choice of WL-
SPP for the metrology system, and to the statistical sampling
regions (from 64 to 640 samples). In essence, using the large
number of samples reduced the resolution in x and y in order
to enhance the accuracy in z. Doing so reduced the expected
3σ error of the metrology system from ± 18 µm to ∼ ± 2 µm,
with precision as accurate as ± 0.31 µm.
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